Project Management

Project Management 2.0

New technologies, concepts, and Web 2.0 tools are popping up everywhere. How can you use them to help your project team collaborate, communicate - or just give your project an extra boost? [Contact Dave]

About this Blog


Recent Posts

Are You Prepping For The PMP 24/7?

Are You Just Too Darn Busy?

Eliciting Requirements... Creatively!

What To Expect When Your Stakeholders Are Expecting

8 More Templates to Save You Time

Are You Just Too Darn Busy?

"Take a number!"

How many times have you heard that from one of your PM buddies? We've always been part of an incredibly busy profession.  Now there's a new survey conducted by in partnership with WorkFront,(formerly ATTask) that tells us we are busier than ever. In this survey 55% of Project Managers reported a significant increase in their workload in 2014.

Among other things, the survey shows:

  • About a third of PMs still use a spreadsheets and email as their primary project management tools.
  • 27% of PMs feel like their biggest problem is that project Information is scattered across too many disconnected tools
  • More than half of all PMs spend about 20-30% of their time on status updates.

So what do you think this means? Are we just not selecting and integrating our tools well? Do we just have more to do in general?  Have you noticed more demand for reporting lately?

Posted on: March 13, 2015 12:11 PM | Permalink | Comments (19)

Is a Hybrid (Desktop AND SaaS) Approach Best?

Situation: Your IT shop bleeds MS Blue, but those SaaS tools sure look inviting.

Desktop vs. SaaS Schedulers

Here's a phrase I'm sure many of you have heard - "Every real project manager knows how to use MS Project".  Throw that up against "Everyone is buying PM SaaS tools because they just include the functions you need" and you've got two sides to a very important argument.   Truth be told, MS Project probably does have some functions not everyone uses and many basic SaaS PM apps don't do much beyond providing online to do lists without any sense of heirarchy or relationship between tasks and resources.

Desktop vs. SaaS PPM Tools
Providing PPM or just a view of all projects in some form of dashboard is becoming increasingly popular in the SaaS world.  However, in looking at enterprise-level SaaS tools, we often run into issues similar to theones we see with schedulers.   That's not to say that truly enterprise-grade PPM sftware does not exist.  It's just that much of what's out there is just a simple view of all projects that doesn't provide you with enough actionable information.

Is a Hybrid Approach a Good Thing?
(typically large) Organizations committed to MS Project have the resources necessary for a completely custom Project Server install that's tailored for that company's needs.  Many small to mid-size companies that are committed to MS Project need something that is easier to implement. Something pre-configured or easily configured to meet most company's needs.

Today, Microsoft rolled out a new section of "Easier with Project", called Project For WorkGroups.  This section highlights their partners who have SaaS (and semi-custom in-house) solutions that deliver a comprehensive view of all of your projects being managed in MS Project.  So your familar desktop app can tie in with a dashboard that is relatively easy to implement.   This is pretty interesting to me as it seems to create a best of both worlds option for a lot of companies. 

What do you think? 

(publishers note: Microsoft is one of our advertisers, but then again there are not many PM software vendors that aren't.  Given that, you may want to take everything I say here with a grain of salt - or just understand that I think its important to talk about these things)
Posted on: June 10, 2009 01:06 PM | Permalink | Comments (1)

Turning Estimating on its Head

Situation: You need to take a fresh approach to estimating.

Estimating tools are always interesting to understand because they reflect what their makers feel are the key inputs to the estimation process.  Many of us go tool-free and estimate based on person experience and the experience of SMEs around us.  We recently spoke with J. Chris White of SimBLOX about the pmBLOX product™.  Whether or not you are interested in a new tool to estimate with, some of the approaches he describes are pretty interesting.

Q.  Can you give us a quick overview on pmBLOX™ and simulation-based project management software in general?  Is the function of the software similar to Monte Carlo simulation?  (What is it? How does it work? Why is it better than traditional estimating?)

A.  What makes pmBLOX truly unique and revolutionary in the field of project management is its underlying model is completely different from anything that’s been done before with simulation-based project management (PM).

Unlike current methods like Monte Carlo (which are based on the CPM/PERT approach requiring task duration as an input), pmBLOX produces task duration and resource utilization as OUTPUTS.  Work backlog, resource availability, productivity, and several other fundamental factors are used as INPUTS.  In effect, pmBLOX turns the traditional CPM/PERT method on its head.

(Note that this is not far off what is already done with current planning tools.  When a user makes an estimate for the duration for a task (an input with the CPM/PERT approach), he/she typically has some assumptions about using particular people for particular amounts of time so that the estimated duration is not a complete guess.  pmBLOX simply starts with these assumptions and makes them explicit so that they can be challenged/defended to ensure a more realistic project plan.)

In the underlying pmBLOX model, a task is represented with a backlog of “work to do”.  For example, a task may require 40 hours of work.  If a single person works on this task for 8 hours/day with 100% productivity (i.e., each hour the person is paid results in an actual hour of task work), then the task will be completed in 5 days (40 hours / 8 hrs/day = 5 days).  (If you are familiar with any simulation techniques, we use system dynamics – a continuous simulation methodology invented at MIT in the late 1950’s that is based on engineering feedback control theory.)

This is a very simple example and is straightforward.  In fact, this is actually what current planning tools like MS Project do behind the scenes.  When a user says a task has a 5-day duration and a single resource is assigned to the task at 100% and that resource works 8 hours/day, behind the scenes the software converts that task to 40 hours.  So, when the user adds a second resource, the duration is cut in half to 2.5 days because now 16 hours of work are being done each day.

The difference with pmBLOX is that the user would designate the task as a 40-hour task instead of inputting a 5-day duration.  Assignment of the single resource is the same.  Very little difference in the inputs, but the underlying approach is fundamentally different.  As long as the single resource is available as expected, the final result (i.e., task duration) is the same for both pmBLOX and the CPM/PERT approach:  task duration is 5 days.

However, once we changed the underlying approach from CPM/PERT to hours-based simulation, we found that the door was open to making many more substantial enhancements to bring the simulations even closer to the real-world activities that the simulations are trying to mimic.  For instance, since we moved to an hours-based approach for completing work, we now had access to variables such as resource productivity.  If conditions ever changed in the simulation so that the same situation in the real world would result in productivity losses for a resource, we could now incorporate that effect.

As an example, imagine working overtime.  As you work more and more overtime over an extended period of time, you get more fatigued and “burned out”.  This is common knowledge.  If you work 8 regular hours for a day, you come back fresh and productive the next day.  If you work a few hours of overtime for a few days, you come back that next day a little drained and less productive, but in a day or two you are back to normal.  If you work 6 hours of overtime for several weeks in a row, your productivity greatly decreases during that time (which impacts that amount of “good work” you can do) and when you come back the next day you still have not fully recovered.  It takes several days or even weeks to get back to your original level of productivity, even when you are only working 8 hours a day regular time.  pmBLOX incorporates this burnout effect.  So, as tasks fall behind schedule in the simulation and resources are tapped to work overtime, there may be productivity losses, which makes work take longer than expected.

As another example, take a “senior” level designer and a “junior” level designer.  In the real world, these two people will not have the same level of productivity.  For a given amount of time, the senior level designer will produce more work than the junior level designer.  This cannot be accommodated in current PM tools without some manipulation or “gaming” of the software.

At this point, one of two things can happen with current planning tools.  With the most commonly used approach, the user does nothing to account for these productivity differences.  A designer is a designer is a designer.  They are all considered equal.  When the project plan is implemented in the real world, the differences in productivity will change the duration of the task depending on which designer is used.  Typically, because the junior designer is cheaper than the senior designer, the junior designer will be used in the real world and will be asked to keep to the schedule that was estimated based on the allocation of a senior designer (because it made the estimated schedule look better).  This is a recipe for disaster.

With the less-used alternative approach, the user can “game” the planning software and say that the junior designer only works 6 hours/day compared to the senior designer working 8 hours/day (to represent that the junior designer is only 75% as productive as the senior designer).  This may work for the execution of tasks based on hours, but now the user must change the hourly wage rate for the junior designer to reflect that each hour (based on a 6 hour day) is more expensive than the junior designer’s actual salary (based on a regular 8 hour day).  While it is possible to do all this with current tools, it is cumbersome and does not reflect reality.  pmBLOX makes this process of assigning productivity levels much easier.

Since you mention Monte Carlo simulation specifically, let me make a few comments about the Monte Carlo approach.  In reality, the Monte Carlo approach is not a simulation, but it is an analytical approach applied to some form of simulation.  So, for instance, MS Project (or Primavera or any other PM tool on the market) “simulates” a project through the use of a database/spreadsheet methodology.  The Monte Carlo approach simply changes a few input variables and re-runs the “simulation” to get a different set of results.

All of this could be done manually by a user, but a Monte Carlo tool automates this process and allows the simulations to occur thousands of times very rapidly.  The Monte Carlo approach is typically used when there is a fair amount of uncertainty in input parameters (e.g., task duration).  The output of a Monte Carlo analysis is a range of results (e.g., a range of project timelines) with a level of confidence for the most probable results (e.g., the most likely project timeline).

Thus, the Monte Carlo approach could be used with pmBLOX, too.  In fact, we already have that feature scheduled for a future version of pmBLOX.  As stated, current Monte Carlo approaches to CPM/PERT vary the inputs on task durations, which are actually an output of all of the variables accounted for in the pmBLOX model.  Therefore, you are varying real-world outputs, not inputs.

With the pmBLOX approach, Monte Carlo analysis will entail varying true inputs:  resource availability, hours backlog, productivity, etc.  This makes the pmBLOX Monte Carlo analysis far more valuable to the user, because it will show the user which of these input variables have the most impact on a project, allowing the user to foresee pitfalls and construct management policies to minimize them.

Q.  You talk about having “every task embedded with a complete set of logic and rules that define how it is performed”.  That sounds like a lot of overhead – kind of like figuring out what every possible variable might be up front.  How do you make sure you create all of the right rules within a reasonable period of time? 

A.  Actually, the pmBLOX simulation runs extremely fast and has a very small memory footprint.  It’s not a lot of overhead because the underlying simulation models are quite basic, and all variables are not figured out up front.  Variables are calculated only when the user runs a simulation.

When we say that every task is embedded with a complete set of logic and rules, we mean that each task has an operational simulation model that mimics activities and decisions that would typically occur in the real world.  In the opening paragraphs, I mentioned that the underlying approach is hours-based and uses the system dynamics simulation methodology.  The amount of work completed for a particular task in any time step of the simulation (e.g., each hour of the day) is basically the product of the number of people assigned to the task, the number of hours those people work in a day, and the productivity of those people during that time.  Three people working on a task for 6 hours/day at a productivity level of 50% would complete 9 hours of task work (3 * 6 * 0.50 = 9).  This is what we call the task execution simulation.

A key factor here is that the underlying system dynamics methodology is very “structural” in nature and not incredibly data-intensive.  As a result, the task model in pmBLOX uses data that a good PM should already be using to make an estimate, no matter what tool they are using.  pmBLOX just makes those fundamental inputs explicit and open to discussion.

On top of the task execution simulation, we add real-world management decision making through several “management policies”.  These management policies are a way for the user to incorporate their management style or decision preferences.  For example, we give the user the ability to change the number of hours any resource works on a task and the ability to change the number of resources assigned to a task, or a combination of both, based on “schedule pressure” or “cost pressure” experienced on the project.

This is another area where the system dynamics methodology provides power.  The system dynamics methodology can incorporate feedback and non-linear relationships among variables.  In the real world, these are what drive changes.  A small change in X may lead to a small change in Y.  But a slightly larger change in X may result in a huge change in Y (i.e., non-linearity.  And, the change in Y may come back around again to influence X (i.e., feedback).

pmBLOX uses the traditional Earned Value calculations to determine the status of a task.  With EV, the two key parameters are the Schedule Performance Index (SPI, schedule pressure) and the Cost Performance Index (CPI, cost pressure).  The pmBLOX user can set a management policy that says that as a task falls behind schedule (i.e., SPI drops below 1.0), assigned resources will work 1 hour of overtime.  As the task falls very far behind schedule (i.e., SPI drops way below 1.0), the policy may state that the assigned resources will work 3 hours of overtime.

Now, as conditions are experienced in the simulation of the project, whether or not the assigned resources work overtime will depend on how far behind schedule a particular task falls.  If conditions end up being such that the task is on time with assigned resources working regular hours, then no overtime is allocated.  However, if for some reason the task falls behind schedule (perhaps due to certain resources being allocated to other tasks for a portion of the time), then the management policy will “kick in” and the assigned resources will work overtime to try to get the task back on schedule.

Each user can set his/her own policies.  One user may have an approach in which overtime is assigned in proportion to the lateness of a task:  the further behind a task is, the more hours of overtime are assigned.  Another user may have an aggressive approach that immediately works resources several hours of overtime as soon as a task is even just slightly behind schedule.  It is completely the user’s choice.

In addition to these simulation methods, pmBLOX incorporates some basic “common sense” approaches that have been lost in some of the current planning tools.  For instance, in MS Project, suppose a task specifies a resource to be used at 50% level of effort.  If that resource works 8 hours/day, this equates to 4 hours/day.  If that resource is only available 3 hours on a given day, MS Project will not use that resource on the task and the resource will sit idle, which delays the task completion.  In the real world, that resource would be used for the 3 hours that it is available.

Q.  What do you mean when you say that “individual tasks actually manage themselves in relation to the entire project”?

A.  In PM tools on the market today, any calculations are “static”.  That is, they do not change as the PM tool generates a project plan.  With pmBLOX, the activities of the first time step influence the activities of the second time step, which influence the activities of the third time step, and so on.  As a result, activities can change throughout the simulation.  In other words, the simulation is “dynamic”.

For example, a specific task may not have a required resource available initially.  In the first few time steps, this may not change the priority or schedule pressure for the task because the due date may be several weeks away.  However, as the simulation progresses through more time steps and the required resource is still not available, the priority and schedule pressure for the task increase to the point where the required resource may be pulled off another activity to come work the high priority task to get it back on schedule.

This dynamic re-allocation of resources occurs in real life, but cannot be simulated with current planning tools.  In current planning tools, the user specifies that the resource is either available or unavailable; the resource cannot dynamically change availability.  So, in the case of the simulation in pmBLOX, the task has “managed itself” to try to achieve its scheduled end date by changing its priority level and pulling resources from other lower-priority tasks.  Note that this is an example of feedback:  the task has a goal and makes changes as necessary to achieve the goal.

Q.  What skills and knowledge enable a user to effectively use pmBLOX?  Do you need a lot of experience with the particular type of project you are facing?  Do you need to be a statistician or math guru?

A.  No special computer skills are needed.  As with current planning tools, only basic PC/Windows skills are necessary.  Users do not have to be statisticians or math gurus.  In fact, the user does not even have to know about the simulation.  We have done our best to make pmBLOX look like any traditional PM software with a Gantt chart, start/end dates, etc.

Because it is a simulation-based tool and there are additional inputs to use the power of the simulation, the interface is slightly different, but not much.  Since our focus is to extend the capabilities of MS Project, any MS Project user should have no trouble navigating and using pmBLOX.  Users can import MS Project files directly and immediately run a simulation.

It should be noted that, as with any project planning tool, actual PM expertise helps.  If someone is new to the field of project management and is not familiar with the estimation process, resource allocation, task dependencies, etc., that person will have a difficult time using pmBLOX to its fullest potential, just as that person would have trouble with any planning tool.  Seasoned PM’s who already know how to build a reasonable project plan and manage a project will appreciate the new power and capabilities available to them with pmBLOX.

Q.  Which types of projects are appropriate for this software?  Do they have to be highly iterative so that the modeling can improve over time – or does it help with one-offs as well?

A.  pmBLOX is appropriate for all types of projects, whether they are repetitive or one-time.  The appropriateness of pmBLOX is more tied to the size and complexity of the project.  For small projects, pmBLOX may be a bit much.  pmBLOX can definitely be used on small projects, but the simulation approach will yield no better results than a spreadsheet.

pmBLOX’s “sweet spot” is medium to large projects where traditional PM tools tend to be limited due to overwhelming complexity.  With these larger projects, someone using a traditional PM planning tool would need to “work around” some of the constraints of the tool or even employ a few “tricks” to fool the software into providing a certain result.  The simulation approach in pmBLOX can handle the complexity and provide much more realistic projections of task completion, resource allocation, etc. without the user having to “game” the software.

Q.  Are there particular industries where this software is more effective?  Are there industries where this software doesn’t work well at all?

A.  Most of the attention pmBLOX has received so far has been from the construction/infrastructure industry, but pmBLOX is not limited to that industry at all.  As an example, one of the industries in which pmBLOX has huge potential value is the IT/software development industry.

With software-related projects, there is a common phenomenon of the “mythical man-month” that cannot be accounted for with current planning tools.  PM’s who have managed software-related projects can tell the stories of how adding people to late projects only makes the projects even later because experienced people have to bring new people up to speed, new people make mistakes that require rework, etc.  With the management policies mentioned previously, the user can designate when to add people to a task due to schedule pressure, as well as the productivity losses due to “overmanning”.  This is much closer to the real world.  There is no such thing as a free lunch.

Just like making people work large amounts of extended overtime can have productivity losses due to fatigue and burnout, adding people to a task can also have productivity losses as everyone “steps on each others’ toes”.  pmBLOX is the only tool available that incorporates these effects.  And, because of pmBLOX’s ability to include non-linear relationships, these types of productivity losses can mirror reality.  When one person is added to a task, the productivity loss may not be much.  However, by adding just another one or two people, the productivity for the whole group typically may suffer a precipitous drop.

Q.  Can you give me an interesting example of a time when this approach was particularly effective?

A.  We took an example engineering project plan right off of the MS Project website.  It was fairly complex with several hundreds of tasks, so it was a good test for pmBLOX.  The total project time was estimated at about 3 years in MS Project.  We imported the file and the pmBLOX simulation showed the project to take about 5 years.  In MS Project, we level-loaded the resources for the engineering project and the timeline pushed out to about 8 years in MS Project after the level-loading.  A very big difference compared to the original file.  We took the level-loaded project and imported it into pmBLOX.  The pmBLOX simulation of the level-loaded project gave exactly the same timeline as the previously imported file:  5 years.

Current PM tools are either overly “optimistic” and provide a short timeline that is completely unattainable but looks good on paper, or current PM tools are overly “pessimistic” and show long timelines that no one would ever accept and in real life would never occur because resources would be shifted along the way.  We like to say that pmBLOX is “realistic”.

A final question that you may still have is:  so what makes the SimBLOX company uniquely qualified to challenge the status quo with project management tools with pmBLOX?

The pmBLOX product that is currently available for community preview is the maturation of a concept that two of the SimBLOX partners originally worked on over 10 years ago for the Department of Defense. At that time, we helped create an advanced project management simulation, using system dynamics as the foundation, for DoD aircraft manufacturers and shipyards.  Thus, it was geared toward very experienced PM’s in the defense industry.  That tool required a higher level of expertise and honestly was priced well beyond what most companies could afford to pay.

After seeing no fundamental changes in PM tools for the last decade, we applied for and received an SBIR (Small Business Innovative Research) grant from DARPA to create a next-generation simulation-based project management tool for a broader commercial market.  Our DARPA customer is actually an ex-Microsoft executive and knows that that field of PM has not advanced much in the last few decades.  pmBLOX is the result of our Phase I SBIR effort and we have been awarded a Phase II SBIR contract to continue development of pmBLOX.
Posted on: January 06, 2009 05:19 PM | Permalink | Comments (3)

Truth (or Clarity) in Scheduling

Situation: You need a more accurate project schedule (and who doesnt?).

The inspiration for the whole Agile movement hinged on the fact that we all know that linear schedules are usually wrong.  The more complex the project, the more that is true.  Agile approaches are one way of dealing with that uncomfortable truth.  Another is to use a really interesting approach offered by the folks at Liquid Planner.  Recently,  we spoke with Charles Seybold, their CEO and founder who offered us some insight into how the tool works.

Q.  Liquid Planner uses date ranges and probabilities to deliver a more accurate view of project progress.  It’s pretty clear how that could be more accurate than any single date.  Could you talk a bit about how input from team members affects deadlines? 

First off, we don’t actually have an entity called a deadline in LiquidPlanner. Rather we have expected dates which we mark with a big [E] on the schedule (these are always flowing) and we have promise dates which are shown on the schedule with the traditional black diamond of a deadline.  The key is to manage to the [E] but set your promise dates at the end of the bars (which are drawn to the 98% confidence date). Setting the promise date “locks” your commitment and you will get an alert if any action puts those promise dates at risk. Any item can have a promise date, but they work best on projects and deliverables.

By asking team members to estimate in a range you are giving them a mechanism which allows them to be honest. Most things have intrinsic uncertainty so we just cannot be that precise. For instance, can we really say we will be done in with exactly 10 days of effort?  If the person says 9-11 days, that tells you they probably have it under pretty good control. If they say 5-15 days, that says something is not well known and that working to understand the requirements better might pay off. 

What really is a single point estimate?  It is the expected case? Best case? Worst case? A sandbag perhaps? 

It’s fun to note that estimating in ranges pretty much eliminates “sandbagging”.  This phenomenon happens when single point estimation meets experience. The experienced worker knows that they need to give estimates they feel 90% confident in so that they will not get dinged for a miss, but when you estimate at that level, 9 times out of 10 you’ll be early.  When that happens the worker can sometimes fill that time with things that maybe were not part of the plan and… well you know the rest. Single point estimates are just bad for relationships.

The other great thing about a team member capturing uncertainty is that it inherits through their chain of prioritized work so that the exit dates on later work get a correspondingly higher about of uncertainty even if they are small tasks. This makes sense because if the exit date of your first task is uncertain, the start date of your next task is uncertain.

Q.  I personally like the Liquid Planner interface from a usability perspective.  What unique steps did you take to test Liquid Planner before its release? From a usability perspective, how do you think it compares to other Ruby on Rails PM apps like Basecamp? (using specific examples)

I’ll interpret your question broadly. In my previous corporate gig like I spent a great deal of time working on planning tools (mostly Excel based) where we were modeling concepts like ranged estimation and flowing work. From basically the first week of LiquidPlanner’s existence, we started prototyping. I maintained a prototype in PowerPoint that we used to mock up every feature we added and I kept that prototype up to date with the work the dev team was doing. This allowed us to test designs very early and make very rapid decisions and modifications for the UI. In short, it was try-fail-learn at a very fast, ridiculously lost cost rate. Looking back at my archive, I see over 200 versions of prototype. This allowed us to narrow in on a design that felt right to us and our friends many months before we put it in the hands of Alpha customers.  Even with that, we’re not perfect; we found some things that needed rework in our private alpha and I expect we’ll find and fix some things in the beta.

We are built on Ruby on Rails and drew inspiration from what the 37 Signals crew accomplished. We like Basecamp and think they did a great job showing the world that web software could be easy. There are many applications out there that are basically Basecamp clones and we think there is no point in repeating that again.  Our goal with LiquidPlanner was to take on a much broader set of objectives for a higher level of professional planning. We wanted to build for a greater scale with hundreds of projects and thousands of tasks. We wanted to be more like a desktop application.  LiquidPlanner is designed to be a platform for project management which, over time, will grow to serve large enterprises while staying true to our belief that the most important feature is usability.  Since you asked for an example, I’ll point out that many of the lightweight online task management tools are not built to put a ton of data in them. LiquidPlanner is build like a data warehouse and uses rich work breakdown structure as the backbone of your collaboration data so that your discussions, documents, and reports will stay organized as you reorganize your plan.

Q.  I really like the idea of everyone owning the schedule, based on their direct input.  Are there typical ways outside of the tool that PMs motivate team members to give honest input (versus padding their tasks) so that you can maximize accuracy?

None that we know of that work with other tools on the market.

Fundamentally a single point estimate is interpreted as a promise and this means that people will negotiate or obfuscate through them. A pattern we see is that the estimate giver and the estimate taker often do not have the same skill level in negotiation and the estimate giver gets backed into what we call “the least defensible estimate” which lies very close to the optimistic estimate.

Some techniques for getting better estimates from your team are tee-shirt sizing, wide band Delphi, and estimating by analogy but they all embrace notions of uncertainty and calibration.  Group estimating is quite effective even informally.

Q.  You talk a lot about “one source of truth”.  How do you see requirements playing into that “single big picture” view of the project, when using Liquid Planner?

Another word for truth is clarity, and any process that you can bring more clarity to is what we are talking about.  For example, in my last company we had a full SDLC and wrote specifications full of requirements for development work. We had a system of rating the specs 1 through 4 based on their “readiness” for Dev; level 4 meant it was done. In practice this was a binary state – not ready vs. ready.  I submit their would be real value in a ranged estimate at these stages to capture a meaningful metric regarding how much uncertainty exists. I think the feedback would be super useful to the person responsible for the requirements as well as a manager who wants to be able to direct her efforts to the projects with the most uncertainty.  If you want to take it a step further, you can do what we do, which is spec requirements in LiquidPlanner and let the projects, categories, and work items carried those requirements with them. That way each item can be assigned and estimated as you go and you can use uncertainty to guide your management actions. It’s the best way to facilitate one of my favorite practices: cut early and cut often.
Posted on: February 25, 2008 04:57 AM | Permalink | Comments (8)

Low Overhead Meeting Scheduling

Situation: You Schedule Lots of Meetings and Want to Make the Process Easier

Why would you want another tool to schedule meetings?  You already have Outlook, right?  Here are a couple of reasons:

1. Not everyone has Outlook (just almost everyone).
2. If your meeting participants are from different organizations or there are a lot of them, scheduling can involve a lot of back and forth - first in email, then in the meeting acceptance process. 

That last part is probably the best reason to try a tool like ScheduleOnce.    It allows you to send all particapants a bunch of time range options.  They then respond concurrently with preferred times and you pick the best time option for everyone.  So to you its just two volleys of messages.  Compare that to the back and forth you end up mired in otherwise.

If you only schedule meetings once in a while, then this isn't the tool for you, but if you're constantly setting up meeting times, it's worth a look. 

Posted on: January 20, 2008 11:37 PM | Permalink | Comments (3)

"How much deeper would the ocean be if sponges didn't live there?"

- Steven Wright