People, Planet, Profits & Projects

by ,

About this Blog

RSS

View Posts By:

Richard Maltzman
Dave Shirley

Recent Posts

RPM

Ten Years After

Half a Sextillion Nematodes - Part 2 of 2

A Half-Sextillion Nematodes (Part 1 of 2)

The Mitsunobu Reaction

A Half-Sextillion Nematodes (Part 1 of 2)

Big Data.  Analytics.  It’s hot now, and for good reason.  The ability to apply machine learning and Artificial Intelligence (AI) to vast amounts of data to, for example, decide to put up an advert of a certain athletic shoe on your desktop, to decide whether a competitor may be worth acquiring, or to choose between investments.

And although money is important, AI can be applied to much, much more than money.  Think about the data of the Earth.  Well, yes, the planet Earth, but also literally, the earth - the soil - on which you are standing (or the building on which you are standing … is standing).

What’s under you?  Soil, roots, worms. 

There is a laboratory in the Swiss Federal Institute of Technology, led by a man named Thomas Crowther.  That laboratory has embarked on a project, which, in a way, is an accounting project.  The thing for which it is doing the accounting is, well, it’s the Earth.

Crowther’s lab is funded for 10+ years to collect individual observations (many, MANY of them) and use AI to reach conclusions about the count of trees, fungi, and, for example, nematode worms.

So far, his lab has concluded that there are 3 trillion trees and 0.4 sextillion nematode worms.  We'll come back to these little wigglers later.

Why do this?

Well, as project managers we know about baselines.  If we are to make improvements and/or to understand the changes taking place so that we can make corrections or note the effect of attempted corrections, we need that baseline.

All of this comes mainly from a cover story in the most recent edition of Nature magazine, in an article called, “The Everything Mapper”, by Aisling Irwin.  It’s  a fascinating story – partially because it’s a fascinating project.  The project has already realized benefits, and has some lessons learned for project managers.   For starters, when Crowther was getting started, he was at Yale and proposed the idea of using ground data from actual tree counts (satellite data can’t peer below the canopy).  To do this, he needed to get scientists from different institutions to collaborate and share their data.  He had to build a team from disparate organizations.  Sound familiar?  The professors around him though it was a ridiculous idea but he managed to do it, to the point where he had data representing an area the size of a US state.  Granted, the state was Rhode Island, but still – quite an accomplishment.

He then worked with data scientist Henry Glick to compare the ground-level counts with the satellite imagery to make informed decisions about how many trees there really were. 

The benefit realized was that the mapping done by Crowther and Glick (and others) was used to build the first global model of tree density – and the figure of “3 Trillion Trees”, which in turn changed the name of the UN’s “Billion Tree Campaign” to the “Trillion Tree Campaign”.  Their database continues to serve the Forest Biodiversity Initiative, which studies and manages the world's largest tree-level forest inventory database.  A snapshot of the status of the Trillion Tree Campaign is shown below.

Another outcome – an important one – is a conclusion that “tree planting is easily the best way to remove carbon from the atmosphere, and could be the key to slowing global warming”.

This is a conclusion that obviously spawns many new projects, but that’s another story.

Let’s get back to nematodes for a bit.  They're usually tiny, around 50 micrometers thick and 1 millimeter long - but the nasty parasitic kinds (this is sort of sickening) can be up to 3 feet long.  They actually play an interesting role in solving climate change.  This recent article from Brigham Young University covers that aspect.  One thing of interest to note is that the biomass of the nematodes of the planet is almost equal to our weight.  That is, add up the weight of all the nematodes and you have 80% of the weight of the entire human population!  The relationship to carbon is summed up here:

“Knowing where these tiny worms live matters because nematodes play a critical role in the cycling of carbon and nutrients and heavily influence CO2 emissions. An important finding of the paper is that nematode abundance is strongly correlated with soil carbon (more carbon = more worms). Understanding the little organisms at a global level is critical if humans are going to understand and address climate change.”

Below is a figure from the Nature article summarizing the data from Crowther's research for trees, nematodes and fungi.

In Part 2, I will talk about more lessons learned for project management and more about the connection between AI and Earth.

Posted by Richard Maltzman on: October 11, 2019 04:42 PM | Permalink | Comments (4)
ADVERTISEMENTS

The second day of a diet is always easier than the first. By the second day you're off it.

- Jackie Gleason

ADVERTISEMENT

Sponsors