Project Management

Disciplined Agile

by , , , , , ,
#ChooseYourWoW | #ContinuousImprovement | #Kaizen | #ProcessImprovement | Adoption | agile | Agile certification | agile transformation | Analogy | Architecture | architecture | book | Business Agility | Certification | Choose your WoW | CMMI | Coaching | Collaboration | Compliancy | Configuration management | Construction phase | Context | Continuous Improvement | COVID-19 | Culture | culture | DAD | DAD discussions | DAD roles | Data Management | database | DevOps | Discipline | disciplined agile delivery | Documentation | DW/BI | Enterprise Agile | Enterprise Architecture | Enterprise Awareness | Essence | Evolving DA | Experiment | Financial | GDD | Geographic Distribution | global development | Goal-Driven | goal-driven | goals | Governance | Guideline | Hybrid | Improvement | inception | Inception phase | Kanban | Large Teams | Lean | Lifecycle | lifecycle | Metrics | mindset | News | News and events | Non-Functional Requirements | non-functional requirements | Operations | Outsourcing | People | Philosophies | Planning | PMI | PMI and DA | Portfolio Management | Practices | Principle | Process | process improvement | Product Management | Product Owners | Program Management | Project Management | Promise | quality | Release Management | Requirements | requirements | Reuse Engineering | Risk management | RUP | Scaling | scaling | scaling agile | Scrum | Support | Surveys | Teams | Technical Debt | Terminology | Testing | testing | Toolkit | Transformation | Workflow | show all posts

About this Blog

RSS

View Posts By:

Scott Ambler
Glen Little
Mark Lines
Valentin Mocanu
Daniel Gagnon
Michael Richardson
Joshua Barnes

Recent Posts

Failure Bow: Choosing Between Life Cycles Flowchart Update

Evolving Disciplined Agile: Guidelines of the DA Mindset

Evolving Disciplined Agile: Promises of the DA Mindset

Evolving Disciplined Agile: Principles of the DA Mindset

Evolving Disciplined Agile: The DA Mindset

Explore Scope: Update

Update

We just wanted to share a quick update with you. We’ve recently evolved the Explore Scope process goal based on feedback that we’ve received about our new book, Choose Your WoW!

Explore Scope process goal

The changes we’ve made to this process goal include:

  • Adding new scoping techniques. We added three scoping techniques that we’ve found effective in practice: modified impact maps, value proposition canvases, and event storming. 
  • Splitting “Explore Purpose” out of General Requirements. It became clear that a subset of the “General Requirements” options were focused on exploring the purpose of what we were doing, so we refactored them out into their own decision point.
  • Moving Level of Detail of the Scope Document to the bottom of the list. This is arguably the least important of all the decision points, so we moved it to the bottom of the list.

We’ve updated Choose Your WoW! to include this release of the Explore Scope process goal.  We will soon be updating Introduction to Disciplined Agile Delivery (DAD) 2nd Edition and An Executive’s Guide to Disciplined Agile, so if you have Kindle versions of these books expect updates to come through soon.

Posted by Scott Ambler on: April 10, 2019 08:05 PM | Permalink | Comments (0)

Strategies for Capturing Quality Requirements

Agile modeling

Quality requirements, also known as non-functional requirements (NFRs), quality of service (QoS) or technical requirements, address issues such as reliability, availability, security, privacy, and many other quality issues.  The following diagram, which overviews architectural views and concerns, provides a great source of quality requirement types (the list of concerns).  Good sources for quality requirements include your enterprise architects and operations staff, although any stakeholder is a potential source for them.

Figure 1. Architectural views and concerns.

Architecture Views and Concerns

Why Are Quality Requirements Important?

Stakeholders will describe quality requirements at any time, but it’s particularly important to focus on them during your initial scoping efforts during Inception as you can see in the goal diagram below for Explore Initial Scope.  Considering quality requirements early in the lifecycle is important because:

  1. Quality requirements drive important architecture decisions. When you are identifying your technical strategy you will often find that it is the NFRs that will be the primary drivers of your architecture.
  2. Quality requirements will drive some aspects of your test strategy. Because they tend to be cross-cutting, and because they tend to drive important aspects of your architecture, they tend to drive important aspects of your test strategy.  For example, security requirements will drive the need to support security testing, performance requirements will drive the need for stress and load testing, and so on. These testing needs in turn may drive aspects of your test environments and your testing tool choices.
  3. Quality requirements will drive acceptance criteria for functional requirements (such as stories).  Quality requirements are typically system-wide thus they apply to many, and sometimes all of your functional requirements.  Part of ensuring that your solution is potentially consumable each iteration is ensuring that it fulfills its overall quality goals, including applicable quality requirements.  This is particularly true with life-critical and mission-critical solutions.

Capturing Quality Requirements

Figure 2 depicts the goal diagram for Explore Scope.  As you can see, there are several strategies for exploring and potentially capturing quality requirements.

Figure 2. The goal diagram for Explore Scope (click to enlarge).

Explore Scope process goal

Let’s explore the three strategies, which can be combined, for capturing quality requirements:

  1. Technical stories.  A technical story is a documentation strategy where the quality requirement  is captured as a separate entity that is meant to be addressed in a single iteration.  Technical stories are in effect the quality requirement equivalent of a user story. For example “The system will be unavailable to end users no more than 30 seconds a week” and “Only the employee, their direct manager, and manager-level human resource people have access to salary information about said employee” are both examples of technical stories.
  2. Acceptance criteria for individual functional requirements.  Part of the strategy of ensuring that a work item is done at the end of an iteration is to verify that it meets all of its acceptance criteria.  Many of these acceptance criterions will reflect quality requirements specific to an individual usage requirement, such as “Salary information read-only accessible by the employee,”, “Salary information read-only accessible by their direct manager”, “Salary information read/write accessible by HR managers”, and “Salary information is not accessible to anyone without specific access rights”.  So in effect quality requirements are implemented because they become part of your “done” criteria.
  3. Explicit list.  Capture quality requirements separately from your work item list in a separate artifact.  This provides you with a reminder for the issues to consider when formulating acceptance criteria for your functional requirements.  In the Unified Process this artifact was called a supplementary specification.

Of course a fourth option would be to not capture quality requirements at all.  In theory this would work in very simple situations but it clearly runs a significant risk of the team building a solution that doesn’t meet the operational needs of the stakeholders.  This is often a symptom of a teams only working with a small subset of their stakeholder types (e.g. only working with end users but not operations staff, senior managers, and so on).

Related Resources

Posted by Scott Ambler on: January 23, 2018 01:17 PM | Permalink | Comments (0)

User Stories For Data Warehouse/Business Intelligence: A Disciplined Agile Approach

Database drum

For teams that are applying agile strategies to Data Warehouse (DW)/Business Intelligence (BI) development is it fairly common for them to take a Disciplined Agile (DA) Approach to DW/BI due to DA’s robustness.  A common question that comes up is how do you write user stories for DW/BI solutions?  Here are our experiences.

First, user stories should focus on business value.  In general, your stories should answer the question “What value is being provided to the user of this solution?”  In the case of a DW/BI solution, they should identify what question the DW/BI solution could help someone to answer, or what business decision the solution could support.  So “As a Bank Manager I would like the Customer Summary Report” or “Get Customer data from CustDB17 and TradeDB” would both be poorly written user stories because they’re not focused on business value.  However, “As a Bank Manager I would like to know what services a given customer currently have with BigBankCo so that I can identify what to upsell them” is.  The solution to implement that story may require you to create the Customer Summary Report (or there may be better ways at getting at that information) and it may require you to get data from CustDB17 and TradeDB (and other sources perhaps).

Here are some examples of user stories for a University DW/BI solution:

  • As a Professor I would like to analyze the current grades of my students so that I can adjust the difficulty of future tests and assignments
  • As a Student I would like to know the drop out rates by course and professor from previous years to determine the likely difficulty of my course choices
  • As a Registrar I would like to know the rate of enrollments within a class over time to determine the popularity of them
  • As a Student I would like to know the estimated travel time between back-to-back classes so that I can determine whether I can make it to class on time

Second, user stories on their own aren’t sufficient.  User stories/epics are only one view into your requirements, albeit an important one.  You’ll also want to explore the domain (e.g. do some data modelling), the user interface (e.g. explore what reports should look like), the business process (e.g. what are the overall business process(es) supported by your DW/BI solution), and technical views (e.g. how does the data flow through your solution architecture).

Third, data requirements are best addressed by domain modelling.  As you are exploring the requirements for your DW/BI solution you will hear about data-oriented requirements.  So capture them in your domain model as those sorts of details emerge over time.  Consider reading Agile/Evolutionary Data Modeling: From Domain Modeling to Physical Data Modeling for a detailed discussion of this topic.

Fourth, technology issues are best captured in architecture models.  You will also hear about existing legacy data sources and in general you will need to capture the architecture of your DW/BI solution.  This sort of information is best captured in architecture models, not in stories.

A few more thoughts:

  1. User stories are only one option for usage modelling.  There are several ways that we can explore usage, user stories/epics are just one way.  You could also create light-weight use cases, usage scenarios, or personas to name a few strategies.
  2. Take a usage-driven approach.  The primary modelling artifact on a Disciplined Agile DW/BI team is the usage model (e.g. your user stories) not the data model.  Data modelling is a secondary consideration compared with usage modelling, and this can be a difficult concept for experienced DW/BI professionals to come to terms with.
  3. Keep your initial modelling light-weight.  The agile rules still apply to DW/BI solutions – keep your modelling efforts sufficient for the task at hand and no more.
  4. Get trained in this.  This is a complex topic.  If you’re interested in training, we suggest that you consider DA 210: Disciplined Agile Data Warehouse (DW)/Business Intelligence (BI) Workshop.
Posted by Scott Ambler on: April 04, 2016 11:36 PM | Permalink | Comments (0)

Managing Requirements Dependencies Between Agile/Lean Teams and Traditional/Waterfall Teams

agileTraditional

Like it or not, functional dependencies occur between requirements.  This can happen for many reasons, as we discussed in Managing Requirements Dependencies Between Teams, and there are several strategies for resolving such dependencies.  In this blog posting we explore what happens when a functional dependency between two requirements exists AND one requirement is implemented by an agile/lean team and another by a traditional/waterfall team.

In our example requirement X depends on requirement Y.  Neither requirement has been implemented yet (if requirement Y had already been implemented, and better yet deployed into production, the point would be moot).  When we refer to the “agile team” this team may be following any one of the lifecycles supported by DAD (Basic/Agile, Advanced/Lean, Continuous Delivery, or Exploratory/Lean Startup).

 

Scenario 1: An Agile/Lean Team Depends on a Traditional Team

In this scenario X is being implemented by an agile team and Y is being implemented by a traditional team.  From the point of view of the agile team, this is very risky for the following reasons:

  1. The traditional team is likely working on a longer time frame.  Disciplined agile teams produce a potentially consumable solution (potentially shippable software in Scrum parlance) on a regular basis, at least every few weeks.  A traditional team typically delivers a working solution over a much longer time frame, often measured in quarters.  The implication is that because Y is being developed by a traditional team it may be many months until it is available, compared to several weeks if it was being developed by an agile team.  This potentially adds schedule risk to the agile team.
  2. The traditional team may not make their deadline.  According to the Standish Group’s Chaos Report, the average traditional team comes it at almost twice their original estimate (e.g. a project originally estimated at 6 months of work takes almost a year).  Similarly, the December 2010 State of the IT Union survey found that traditional teams were much more likely than agile teams to miss their deadlines.  By having a dependency on the deliverable of a traditional team, an agile team effectively increases their schedule risk.
  3. The traditional team may struggle to deliver something that is “agile friendly”.  Agile teams routinely develop well written, high-quality software that is supported by a robust regression test suite and where needed concise supporting documentation.  Although traditional teams can also choose to deliver similar artifacts very often their code isn’t as well supported by regression tests and their documentation may be overly detailed (and thereby more likely to be out of date and difficult to maintain).  In other words, there is potential for quality risk being injected into the agile team.
  4. The traditional team may not deliver.  There is always the risk that the traditional team doesn’t implement Y, traditional teams often need to reduce the scope of their deliveries in order to meet their commitments, or if they do implement Y it is done too late to be useful any more.

 

There are several strategies the agile team may decide to take:

  1. Negotiate a delivery date with the traditional team. Once the agile team has identified the dependency they should collaborate with the traditional team to determine the implementation schedule for Y.  The agile team now has a release/schedule dependency on the traditional team which is a risk and should be treated as such.  The agile team’s high-level release plan should show a dependency on the delivery of Y and their risk log (if they have one) should also capture this risk.  The agile team should stay in contact with the traditional team throughout construction to monitor the progress of the development of Y.  The agile team should also attempt to negotiate early delivery of Y so that they may integrate with it, and test appropriately, as soon as possible.
  2. Collaborate to develop Y.  One way for the agile team to make it attractive for the traditional team to implement Y earlier than they normally would is to pitch in and help to do the work.
  3. Rework X to remove the dependency.  One of the general strategies discussed in Managing Requirements Dependencies Between Teams was to rework X so that it no longer depended on Y.  This may mean that you reduce the scope of X or it may mean that you deliver part of X now and wait to deliver the rest of X once Y is available.
  4. Reschedule the implementation of X.  Another general strategy is to deprioritize X and implement it after Y is eventually deployed.  This is a realistic option if Y is about to be implemented soon, say in the next few months, but often unrealistic otherwise.
  5. Implement Y.  When the lead time is substantial, the agile team may choose to do the work themselves to implement the functionality.  This can be viable when the agile team has the skills, experience, and resources to do the work.  This strategy runs the risk of Y being implemented twice, once by each team, potentially inconsistently.  To avoid this sort of waste the agile team will want to negotiate with the traditional team to take the work over from them.

 

Scenario 2: A Traditional Team Depends on an Agile/Lean Team

In this scenario X is being implemented by a traditional team and Y by an agile team.  From the point of view of the traditional team, this might be seen as risky for the following reasons:

  1. They may not understand how a disciplined agile team actually works. Many traditional teams are still concerned about the way that they believe agile teams work.  This is often because they perceive agile to be undisciplined or ad-hoc in nature, when the exact opposite is true.  The implication is that the agile team will need to describe to the traditional team how they work, why they work that way, and describe the types of deliverables they will produce.
  2. They may want traditional deliverables from the agile team.  Disciplined agile teams will produce high quality code, a regression test suite for that code, and concise supporting documentation.  Traditional teams may believe that they also want detailed requirements and design specifications, not realizing that the tests produced by the agile team can be considered as executable specifications for the production code.  The implication is that the two teams will need to negotiate what the exact deliverable(s) will be.
  3. They may struggle with any changes to the interface.  Agile teams are used to working in an evolutionary manner where the requirements, design, and implementation change over time.   Traditional teams, on the other hand, will often strive to define the requirements and design up front, baseline them, and then avoid or prevent change to them from that point onwards.  These different mindsets towards change can cause anxiety within the traditional team, the implication being that the agile team may need to be a bit more strict than they usually would be when it comes to embracing change.

The fact is that scenario 2, a traditional team relying on a disciplined agile team, is very likely an order of magnitude less risky than the opposite (scenario 1).   Either scenario will prove to be a learning experience for the two teams, particularly the one that relies on the other team.  Going into the situation with an open mind and a respectful strategy will greatly increase the chance that you’ll work together effectively.

 

Posted by Scott Ambler on: July 21, 2014 07:49 PM | Permalink | Comments (0)

Managing Requirements Dependencies Between Agile and Lean Teams

agile lean

Sometimes functional dependencies occur between requirements that are being implemented by different teams.  For example, requirement X depends on requirement Y and X is being worked on by team A and Y is being worked on by team B.  This generally isn’t a problem when requirement Y is implemented before requirement X, is a bit of an annoyance if they’re being implemented in parallel (the two teams will need to coordinate their work), and an issue if X is being implemented before Y.  For the rest of this posting we will assume that X depends on Y, X is just about to be implemented, and Y has not yet been implemented.  Previously in Managing Dependencies in Agile Teams we discussed strategies for addressing such dependencies, including reordering the work or mocking out the functionality to be provided by Y.  In this posting we explore the implications of managing requirements dependencies between an agile team and a lean team.

Managing requirements dependencies between an agile and lean team is similar to that of managing dependencies between two agile teams, although there are important nuances.  These nuances stem from differences in the ways that agile and lean teams manage their work.  Figure 1 depicts how agile teams do so, organizing work items (including requirements) as a prioritized stack (called a product backlog in Scrum).  Work is pulled off the stack in batches that reflect the amount of work they can do in a single iteration/sprint.  With agile teams the entire stack is prioritized using the same strategy, Scrum teams will prioritize by business value but disciplined agile teams are more likely to consider a combination of business value and risk. Figure 2 shows that lean teams manage their work as an options pool, pulling one work item out of the pool at a time.  Lean teams will prioritize work items on a just in time (JIT) basis, determining which work is the highest priority at the point in time that they pull the work into their process.  As you can see in Figure 2, they will consider a variety of factors when determining what work is the most important right now.

Figure 1. Agile work management strategy.

Work Item List

 

Figure 2. Lean work management strategy.

Work Item Pool

 

When an agile team depends on a lean team challenge is relatively straightforward.  Because lean teams take on work in very small batches, one item at a time, it gives them much more granular control over when they implement something.  As long as the agile team lets them know in a timely manner that the functionality needs to be implemented it shouldn’t be a problem.  For example, if the agile team is disciplined enough to do look-ahead modelling (an aspect of Scrum’s backlog grooming efforts) then they should be able to identify an iteration or two in advance that they have a dependency on the lean team.  At that point the product owner of the agile team should talk with the appropriate person(s) on the lean team to let them know about the dependency so that the lean team can prioritize that work appropriately (perhaps treat it as something to be expedited).

When a lean team depends on an agile team it’s a bit harder, but not much, to address.  This time the challenge is with the batch sizes of the work that the teams take in.  The lean team is taking in work in a very granular manner, one at a time, whereas the agile team is taking in work in small batches (perhaps two weeks worth of work at a time).  From a lean point of view this injects wait time into their process, even though it may just be two weeks, but this wait time is still considered to be waste (muda).  Once again the solution would be for the lean team to identify the dependency ahead of time via look-ahead modelling and negotiate with the agile team.

To summarize, requirements dependencies do in fact occur.  There are strategies to minimize their impact, in particular implementing and better yet deploying the functionality that is being depended upon before the dependent functionality is implemented, but sometimes it just doesn’t work out that way.  So your team will need to be prepared to manage the requirements dependencies that it has on other teams, and similarly be prepared to support other teams with dependencies on them.  In this series of blog postings we’ve seen how Agile<=>Agile and Agile<=>Lean dependencies can be managed, next up is Agile/Lean<=>Traditional.

Posted by Scott Ambler on: July 07, 2014 04:49 AM | Permalink | Comments (0)
ADVERTISEMENTS

"The higher up you go, the more mistakes you are allowed. Right at the top, if you make enough of them, it's considered to be your style."

- Fred Astaire

ADVERTISEMENT

Sponsors