Cycle Time Analysis
last edited by: Stéphane Parent on Nov 15, 2017 2:12 PM | login/register to edit this page | ||
![]() A technique that examines the total length of time an activity needs to complete its cycle. It is measured by the amount of time that an input to a business activity requires to be transformed to an output. Where a process consists of multiple activities, the cycle time for any given activity is the time between previous activity completion and current activity completion (including any time between the completion of one activity and the start of the next activity). The objective of Cycle Time Analysis (CTA) is to identify opportunities for breakthrough and the achievement of continuous process improvement, using time as a core measure. CTA is an application of "actual delta theoretical", or "A delta T" (see Gap Analysis), where the gap between actual and theoretical time-to-completion is analyzed.
Procedures
InstructionsConfirm the scope of the Cycle Time Analysis. The scope may encompass one key activity or a set of activities surrounding a particular business problem and/or comprising the value stream activities flow (see Work Flow Diagramming). Then gather activity profile information, pertaining to the target activities, and assign actual time-to-completion values for each activity (see Activity Profiling). An effective approach is to add the times to the work flow diagram (see following example). Where actual times are not readily available, best-guess estimates may be used, provided that the means for estimation are consistent across all activities. If actuals are not available and estimates are not practical, standard times can be used. Some ways to collect cycle times are as follows: In this scenario, for example, repetitive activities start with a written, dated input and finish when the output is delivered. There are two characteristics of end-point measurements: beginning and end dates can be correlated, and there are a large number of incidents. Once the information has been gathered, it is possible to calculate the average cycle time for the activity. (See following example.) Beginning and end dates are not always optimal solutions for determining cycle time. There may be instances when these dates are unavailable or simply do not exist. Controlled experiments allow for gathering data related to the selected sample. Use controlled experiments for small to medium-sized activity work flows. It would be too time-consuming for a project team to prototype and experiment with value streams that extend for weeks or months (see Simulation). Operating manuals, procedure descriptions, corporate policies, and other business documentation may promote cycle time information (or clues to derive cycle time). Reviewing and researching these historical records may be helpful. Be sure to adjust for relevance. This approach involves breaking down the activity into component steps and then, for each component, estimating its cycle time. Obtain the necessary information from subject matter experts performing the work, to estimate cycle time. Estimate the amount of time currently spent on the entire process by summing the times for all activities. Apply Brainstorming, Workshops and/or Facilitation techniques, if necessary, to determine what the criteria are for "added value " activities, and identify those activities which do not add value to the customer of the activity. Some rules of thumb for determining if an activity adds value are:
|
|||
last edited by: Stéphane Parent on Nov 15, 2017 2:12 PM | login/register to edit this page | ||
Reviews (9)
"If at first you don't succeed, try, try again. Then quit. There's no use being a damned fool about it." - W. C. Fields |